Reservoir Boosting : Between Online and Offline Ensemble Learning
نویسندگان
چکیده
We propose to train an ensemble with the help of a reservoir in which the learning algorithm can store a limited number of samples. This novel approach lies in the area between offline and online ensemble approaches and can be seen either as a restriction of the former or an enhancement of the latter. We identify some basic strategies that can be used to populate this reservoir and present our main contribution, dubbed Greedy Edge Expectation Maximization (GEEM), that maintains the reservoir content in the case of Boosting by viewing the samples through their projections into the weak classifier response space. We propose an efficient algorithmic implementation which makes it tractable in practice, and demonstrate its efficiency experimentally on several compute-vision data-sets, on which it outperforms both online and offline methods in a memory constrained setting.
منابع مشابه
Statistical Mechanics of Mutual Learning with a Latent Teacher
We propose a mutual learning with a latent teacher within the framework of on-line learning, and have analyzed its dynamical behavior through the statistical mechanics method. The proposed model consists of two learning steps: two students independently learn from a teacher, and then the students learn from each other through the mutual learning. A teacher is not used in the mutual learning, so...
متن کاملImproving reservoir rock classification in heterogeneous carbonates using boosting and bagging strategies: A case study of early Triassic carbonates of coastal Fars, south Iran
An accurate reservoir characterization is a crucial task for the development of quantitative geological models and reservoir simulation. In the present research work, a novel view is presented on the reservoir characterization using the advantages of thin section image analysis and intelligent classification algorithms. The proposed methodology comprises three main steps. First, four classes of...
متن کاملModel Ensemble for Click Prediction in Bing Search Ads
Accurate estimation of the click-through rate (CTR) in sponsored ads significantly impacts the user search experience and businesses’ revenue, even 0.1% of accuracy improvement would yield greater earnings in the hundreds of millions of dollars. CTR prediction is generally formulated as a supervised classification problem. In this paper, we share our experience and learning on model ensemble de...
متن کاملDynamic ensemble for target tracking
On-line boosting is a recent breakthrough in the machine learning literature that has opened new possibilities in many diverse fields. Instead of generating a static strong classifier off-line, the classifier can be built on-the-fly on incoming samples. This has been successfully exploited in treating computer vision tasks such as tracking as a classification problem thus providing an intriguin...
متن کاملA Hybrid Framework for Building an Efficient Incremental Intrusion Detection System
In this paper, a boosting-based incremental hybrid intrusion detection system is introduced. This system combines incremental misuse detection and incremental anomaly detection. We use boosting ensemble of weak classifiers to implement misuse intrusion detection system. It can identify new classes types of intrusions that do not exist in the training dataset for incremental misuse detection. As...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013